Approximate Lyapunov–Perron Transformations: Computation and Applications to Quasi-Periodic Systems

Author:

Sharma Ashu1

Affiliation:

1. Department of Mechanical Engineering, Auburn University, Auburn, AL 36849

Abstract

Abstract A new technique for the analysis of dynamical equations with quasi-periodic coefficients (so-called quasi-periodic systems) is presented. The technique utilizes Lyapunov–Perron (L–P) transformation to reduce the linear part of a quasi-periodic system into the time-invariant form. A general approach for the construction of L–P transformations in the approximate form is suggested. First, the linear part of a quasi-periodic system is replaced by a periodic system with a “suitable” large principal period. Then, the state transition matrix (STM) of the periodic system is computed in the symbolic form using Floquet theory. Finally, Lyapunov–Floquet theorem is used to compute approximate L–P transformations. A two-frequency quasi-periodic system is studied and transformations are generated for stable, unstable, and critical cases. The effectiveness of these transformations is demonstrated by investigating three distinct quasi-periodic systems. They are applied to a forced linear quasi-periodic system to generate analytical solutions. It is found that the closeness of the analytical solutions to the exact solutions depends on the principal period of the periodic system. A general approach to obtain the stability bounds on linear quasi-periodic systems with stochastic perturbations is also discussed. Finally, the usefulness of approximate L–P transformations is presented by analyzing a nonlinear quasi-periodic system with cubic nonlinearity using time-dependent normal form (TDNF) theory. The closed-form solution generated is found to be in good agreement with the exact solution.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference24 articles.

1. Sur Les Équations Différentielles Linéaires à Coefficients Périodiques;Ann. Sci. Éc. Norm. Supér.,1883

2. Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems;Int. J. Numer. Methods Eng.,1977

3. Stability Analysis of Periodic Systems by Truncated Point Mappings;J. Sound Vib.,1996

4. On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon;Acta Math.,1886

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3