An Experimental Investigation of the Nonlinear Response of an Atmospheric Swirl-Stabilized Premixed Flame

Author:

Schimek Sebastian1,Moeck Jonas P.1,Paschereit Christian Oliver1

Affiliation:

1. Chair of Fluid Dynamics, Institute of Fluid Dynamics and Technical Acoustics, Hermann-Föttinger-Institut, Technische Universität Berlin, 10623 Berlin, Germany

Abstract

Due to stringent emission restrictions, modern gas turbines mostly rely on lean premixed combustion. Since this combustion mode is susceptible to thermoacoustic instabilities, there is a need for modeling tools with predictive capabilities. Linear network models are able to predict the occurrence of thermoacoustic instabilities but yield no information on the oscillation amplitude. The prediction of the pulsation levels and hence an estimation whether a certain operating condition has to be avoided is only possible if information on the nonlinear flame response is available. Typically, the flame response shows saturation at high forcing amplitudes. A newly constructed atmospheric test rig, specifically designed for the realization of high excitation amplitudes over a broad frequency range, is used to generate extremely high acoustic forcing power with velocity fluctuations of up to 100% of the mean flow. The test rig consists of a generic combustor with a premixed swirl-stabilized natural gas flame, where the upstream part has a variable length to generate adaptive resonances of the acoustic field. The OH∗ chemiluminescence response, with respect to velocity fluctuations at the burner, is measured for various excitation frequencies and amplitudes. From these measurements, an amplitude dependent flame transfer function is obtained. Phase-averaged OH∗ pictures are used to identify changes in the flame shape related to saturation mechanisms. For different frequency regimes, different saturation mechanisms are identified.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference19 articles.

1. Combustion Instabilities In Gas Turbine Engines

2. Acoustic Analysis of Gas Turbine Combustors;Dowling;J. Propul. Power

3. Implementation of Instability Prediction in Design: Alstom Approaches;Paschereit

4. Nonlinear Self-Excited Oscillations of a Ducted Flame;Dowling;J. Fluid Mech.

5. A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function;Noiray;J. Fluid Mech.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3