A Deep Learning-Based Surrogate Model for Complex Temperature Field Calculation With Various Thermal Parameters

Author:

Zhu Feiding1,Chen Jincheng1,Ren Dengfeng1,Han Yuge1

Affiliation:

1. Nanjing University of Science and Technology School of Energy and Power Engineering; MIIT Key Laboratory of Thermal Control of Electronic Equipment, , Nanjing 210094 , China

Abstract

AbstractSurrogate models of temperature field calculation based on deep learning have gained popularity in recent years because it does not need to establish complex mathematical models. However, the existing models cannot generate the temperature field for different boundary conditions or thermal parameters. In addition, it is also challenging to generate the details of the complex temperature field. In this paper, we propose the Parameters-to-Temperature Generative Adversarial Network (PTGAN) to generate temperature field images with high-quality details for different thermal parameters. The PTGAN model mainly includes the temperature field generation module and the thermal parameter encoding module. Additionally, we use a joint loss function to improve the quality of the generated temperature field image. The temperature field of the armored vehicle is calculated by the computational fluid dynamics method to obtain data set to verify the proposed PTGAN. The results show that the temperature images generated by the PTGAN has high accuracy, and the average relative error is only 0.205%. The attempt to integrate thermal parameters into the temperature field image generation is successful. The temperature field database can be generated quickly and accurately, which is of great significance for the further integration of deep learning and heat transfer.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3