Lattice Boltzmann Modeling of Natural Convection in a Large-Scale Cavity Heated From Below by a Centered Source

Author:

Abouricha Noureddine1,El Alami Mustapha2,Gounni Ayoub1

Affiliation:

1. LPMMAT, Department of Physics, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca 20100, Morocco e-mail:

2. LPMMAT, Department of Physics, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca 20100, Morocco e-mails: ;

Abstract

Turbulent natural convection in a large-scale cavity has taken a great attention thanks to its importance in many engineering applications such as building. In this work, the lattice Boltzmann method (LBM) is used to simulate turbulent natural convection heat transfer in a small room of housing heated from below by means of a heated floor. The ceiling and the four vertical walls of the room are adiabatic except for a portion of one vertical wall. This portion simulates a glass door with a cold temperature θc = 0. The cavity is filled by air (Pr = 0.71) and heated from below with uniformly imposed temperature θh = 1. The effects of the heat source length (Lr) and Rayleigh number (Ra) on the flow structure and heat transfer are studied for ranges of 0.2 ≤ Lr ≤ 0.8 and 5 × 106 ≤Ra ≤ 108. The heat transfer is examined in terms of local and mean Nusselt numbers. The results show that an increase in Rayleigh number or in heat source length increases the temperature in the core of the cavity. The flow structure shows that turbulent natural convection regime is fully developed for Ra = 108. Correlations for mean Nusselt number as a function with Ra for different values of Lr are expressly derived.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3