Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework

Author:

Hall John F.1,Chen Dongmei1

Affiliation:

1. e-mail:  Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712

Abstract

Wind is considered to be one of the most promising resources in the renewable energy portfolio. Still, to make wind energy conversion more economically viable, it is necessary to extract greater power from the wind while minimizing the cost associated with the technology. This is particularly important for small wind turbines, which have the highest cost per kilowatt of energy produced. One solution would be a variable ratio gearbox (VRG) that can be integrated into the simple and low-cost fixed-speed induction generator. Through discrete variable rotor speed operation, the VRG-enabled system affects the wind speed ratio, the power coefficient, and ultimately the power produced. To maximize electrical production, mechanical braking is applied during the normal operation of the wind turbine. A strategy is used to select gear ratios (GRs) that produce torque slightly above the maximum amount the generator can accept while simultaneously applying the mechanical brake, so that full load production may be realized over greater ranges of the wind speed. To characterize the performance of the system, a 100 kW, fixed speed, stall-regulated wind turbine, has been developed for this study. The VRG-enabled wind turbine control system is presented in two papers. Part 1 focuses on the turbine simulation model, which includes the rotor, VRG-enabled drivetrain, disk brake, and electric generator. A technique for estimating the performance of a disk brake, in the wind turbine context, is also presented. Part 2 of the research will present a dynamic optimization algorithm that is used to establish the control protocol for competing performance objectives.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference25 articles.

1. Comparison of Wind Turbine Operating Transitions Through the Use of Iterative Learning Control;American Control Conference (ACC),2011

2. Nonlinear Robust Control to Maximize Energy Capture in a Variable Speed Wind Turbine;American Control Conference,2008

3. Maximizing Wind Turbine Energy Capture Using Multivariable Extremum Seeking Control;Wind Eng.,2009

4. Johnson, K. E., 2004, “Adaptive Torque Control of Variable Speed Wind Turbines,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-36265.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3