Affiliation:
1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
Abstract
The present study investigates the development and structure of three-dimensionality due to a three-dimensional velocity perturbation applied to the inlet of an unsteady two-dimensional separation computation. A random noise perturbation and a sine-wave perturbation are considered separately. In both cases, the spanwise variations were amplified in the separation and within the shed vortices. The vortex shedding frequency observed in the two-dimensional computation was not altered by the three dimensionality of the flow field. No observable spanwise structure was produced by the random noise perturbation. The sine-wave perturbation, however, produced longitudinal Go¨rtler vortices within the separation. Using a linear stability analysis, the presence of longitudinal vortices in a separated laminar boundary layer was predicted by Inger (1987). When the velocity field was averaged across the span, it was found that the sine-wave perturbation increased the separation length and reduced the strength of shed vortex. The span-averaged streamlines from the random noise perturbation, however, reproduced the unsteady separation of the two-dimensional computations.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献