Ohmic Curing of Three-Dimensional Printed Silver Interconnects for Structural Electronics

Author:

Roberson David A.1,Wicker Ryan B.2,MacDonald Eric2

Affiliation:

1. W. M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968 e-mail:

2. W. M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968

Abstract

Ohmic curing was utilized as a method to improve the conductivity of three-dimensional (3D) interconnects printed from silver-loaded conductive inks and pastes. The goal was to increase conductivity of the conductive path without inducing damage to the substrate. The 3D via/interconnect structure was routed within 3D polymeric substrates and had external and internal sections. The 3D structures were created by the additive manufacturing (AM) process of stereolithography (SL) and were designed to replicate manufacturing situations which are common in the fabrication of 3D structural electronics that involve a combination of AM and direct write (DW) processing steps. The photocurable resins the 3D substrates were made of possessed glass transition temperatures of 75 °C and 42 °C meaning that a nonthermal method to increase the conductivity of the printed traces was needed as the conductive inks tested in this study required oven cure temperatures greater than 100 °C to perform properly. Ohmic curing was shown to decrease the measured resistance of the via/interconnect structure without harming the substrate. Substrate damage was observed on thermally cured samples and was characterized by discoloration and scaling of the substrate. Resistance measurements of the via/interconnect structures revealed samples cured by the ohmic curing process performed equal or better than samples subjected to thermal curing. The work presented here demonstrates a method to overcome the thermal cure temperature limitations of polymeric substrates imposed on the processing parameters of conductive inks during the fabrication of 3D structural electronics and presents an example of overcoming a manufacturing process problem associated with this emerging technology. An ink selection process involving characterization of the compatibility of inks with the substrate material and the use of different inks for the via and interconnect sections was also discussed.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference40 articles.

1. The Cambrian Explosion of Popular 3D Printing;IJIMAI,2011

2. 3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development;J. Sustainable Dev.,2010

3. Fab@Home: The Personal Desktop Fabricator Kit;Rapid Prototyping J.,2007

4. 3D Printer Selection: A Decision-Making Evaluation and Ranking Model;Virtual Phys. Prototyping,2013

5. A Third Industrial Revolution,2013

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3