Affiliation:
1. Argonne National Laboratory, Reactor Analysis and Safety Division, Argonne, Ill.
2. University of California, Berkeley, Calif.
Abstract
When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of the drop shape, and the development of internal circulation within the drop. This problem, which is of importance in evaporative cooling systems, has been studied experimentally for water drops 3–6 mm in diameter falling through air. Study of a simplified set of governing equations indicates that similitude does not exist in this problem. However, it has been found that for this size range an approximate procedure based on the assumption of negligible internal thermal resistance and an empirical transient correction factor applied to the Ranz-Marshall [1] correlation could describe the data very well.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献