Mathematical Modeling of Pneumatic Pipes in a Simulation of Heterogeneous Engineering Systems

Author:

Kamiński Zbigniew1

Affiliation:

1. Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland

Abstract

Pipes are widely used in hydraulic and pneumatic subsystems for transferring energy or signals. Accurate prediction of pressure transients is very important in the drive and control circuits of complex fluid-line systems. Based on the approximation of Navier-Stokes equations for one-dimensional flow, a mathematical model of the pneumatic pipe with lumped parameters was developed using ordinary differential equations, which can be easily implemented in most computer programs for the simulation of complex heterogeneous engineering systems. Implemented in Matlab-Simulink software, the computer model of the pipe makes it possible to determine the influence of capacitance, inertance, resistance and heat exchange on the dynamic characteristics of the control and power circuits of pneumatic systems. An advantage of the model is that various functions can be selected to describe linear resistances and local resistances are taken into account, particularly at the inlet and outlet. Such resistances largely affect flow resistances in short tubes (up to 10 m) that can be found, e.g., in pneumatic brake systems of road vehicles. Confirmed by Kolmogorov-Smirnov test results, the consistency of the pressure curves obtained in experimental and simulation tests proves the implemented tube model to be useful for the calculations of pneumatic system dynamics.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Modeling of Heterogeneous Systems in Early Design Phases;Reeßing

2. The Transient Response of Fluid Lines;Brown;ASME J. Basic Eng. Ser. D

3. A Survey of Modeling Techniques for Fluid Line Transients;Goodson;ASME J. Basic Eng.

4. A Comparative Study of Modelling Techniques for Laminar Flow Transients in Hydraulic Pipelines;Soumelidis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3