Dynamic Deformation Calculation of Articular Cartilage and Cells Using Resonance-Driven Laser Scanning Microscopy

Author:

Sibole Scott C.1,Moo Eng Kuan2,Federico Salvatore3,Herzog Walter1

Affiliation:

1. Human Performance Laboratory, University of Calgary , Calgary, AB T2N 1N4, Canada

2. Department of Applied Physics, University of Eastern Finland , Kuopio 70211, Finland

3. Department of Mechanical and Manufacturing Engineering, University of Calgary , Calgary, AB T2N 1N4, Canada

Abstract

Abstract The deformation of articular cartilage and its cells at the micro-scale during dynamic activities such as gait has high mechanoregulatory importance. Measuring the cellular geometries during such dynamics has been limited by the rate of microscopic image acquisition. The introduction of resonating mirrors for image rasterization (resonant scanning), rather than the conventional servo control (galvano scanning), has significantly improved the scanning rate by more than 100×. However, the high scanning rate comes at the cost of image quality, thereby posing challenges in image processing. Here, resonance-driven 3-D laser microscopy is used to observe the transient, micro-scale deformation of articular cartilage and its cells under osmotic challenge conditions. Custom image segmentation and deformable registration software were implemented for analysis of the resonance-scanned microscopy data. The software exhibited robust and accurate performance on the osmotic swelling measurements, as well as quantitative validation testing. The resonance-scanning protocol and developed analysis software allow for simultaneous strain calculation of both the local tissue and cells, and are thus a valuable tool for real-time probing of the cell–matrix interactions that are highly relevant in the fields of orthopedic biomechanics, cell mechanobiology, and functional tissue engineering.

Funder

Alberta Innovates - Health Solutions

Canada Research Chairs

Institute of Musculoskeletal Health and Arthritis

Killam Trusts

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3