Indirect Traumatic Optic Neuropathy Induced by Primary Blast: A Fluid–Structure Interaction Study

Author:

Tong Junfei1,Kedar Sachin2,Ghate Deepta3,Gu Linxia4

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 e-mail:

2. Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440

3. Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119

4. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656

Abstract

Current knowledge of traumatic ocular injury is still limited as most studies have focused on the ocular injuries that happened at the anterior part of the eye, whereas the damage to the optic nerve known as traumatic optic neuropathy (TON) is poorly understood. The goal of this study is to understand the mechanism of the TON following the primary blast through a fluid–structure interaction model. An axisymmetric three-dimensional (3D) eye model with detailed orbital components was developed to capture the dynamics of the eye under the blast wave. Our numerical results demonstrated a transient pressure elevation in both vitreous and cerebrospinal fluid (CSF). A high strain rate over 100 s−1 was observed throughout the optic nerve during the blast with the most vulnerable part located at the intracanalicular region. The optic nerve deforming at such a high strain rate may account for the axonal damage and vision loss in patients subjected to the primary blast. The results from this work would enhance the understanding of indirect TON and provide guidance in the design of protective eyewear against such injury.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3