Assessing Wellbore Stability With a Modified Lade Failure Criterion

Author:

Bahrami Babak1,Sadatshojaie Ali2,Wood David A3

Affiliation:

1. Department of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7179885151, Iran

2. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 7179615789, Iran

3. DWA Energy Limited, Lincoln, Lincolnshire LN5 9JP, UK

Abstract

Abstract The importance of evaluating wellbore stability in analyzing and estimating the efficiency of drilling directionally into oil and gas reservoirs is well known. Geomechanical data and failure criterion can be used to model and control rock mass behavior in response to the stresses imposed upon it. Understanding and managing the risks of rock mass deformation significantly improve operational processes such as wellbore stability, sand production, and hydraulic fracturing. The modified Lade failure criterion is established as the most precise failure criterion based on previous studies. By combining it with tensions around the wellbore, a novel relationship is derived for determining the stable mud window. To investigate the accuracy of the new relationship, two geomechanical models (neural network and empirical correlations) for a one-directional wellbore are developed and their performance compared with two other failure criteria (Hoek–Brown and Mogi–Coulomb). The geomechanical parameters (Young’s modulus, Poisson ratio, uniaxial compressive strength, and internal friction coefficient) obtained from the models show that neural network configurations perform better than those built with the empirical equation. The horizontal minimum and maximum stress values across the depth interval of interest (2347–2500 m) are established for a case study reservoir. The model provides an accurate prediction of wellbore instability when applying the modified Lade criterion; the stable mud weight is derived with improved precision compared to the other failure criteria evaluated. A key advantage of the developed method is that it does not require input knowledge of the reservoir’s structural boundaries (e.g., the fault regime) or core test data.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3