Prediction and Measurement of Rotating Stall Cells in an Axial Compressor

Author:

Saxer-Felici H. M.1,Saxer A. P.1,Inderbitzin A.1,Gyarmathy G.1

Affiliation:

1. Turbomachinery Laboratory, Institute of Energy Technology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Abstract

This paper presents a parallel numerical and experimental study of rotating stall cells in an axial compressor. Based on previous theoretical and experimental studies stressing the importance of fluid inertia and momentum exchange mechanisms in rotating stall, a numerical simulation using the Euler equations is conducted. Unsteady two-dimensional solutions of rotating stall behavior are obtained in a one-stage low subsonic axial compressor. The structure and speed of propagation of one fully developed rotating stall cell together with its associated unsteady static pressure and throughflow field distributions are presented. The numerical capture of a stalled flow region starting from a stable high-flow operating point with an axisymmetric flow distribution and evolving at a reduced mass flow operating point into a rotating stall pattern is also discussed. The experimental data (flow visualization, time-averaged and unsteady row-by-row static pressure measurements) acquired in a four-stage water model of a subsonic axial compressor cover a complete characteristic line ranging from high mass flow in the stable regime to zero throughflow. Stall inception is presented together with clearly marked different operating zones within the unstable regime. For one operating point in the unstable regime, the speed of propagation of the cell as well as the static pressure spikes at the front and rear boundaries of the rotating stall cell are compared between computations, measurements, and an idealized theory based on momentum exchange between blade rows entering and leaving the stalled cell. In addition, the time evolution of the pressure trace at the rotor/stator interface is presented. This study seems to support the assumption that the cell structure and general mechanism of full-span rotating stall propagation are essentially governed by inertial effects and momentum exchange between the sound and stalled flow at the cell edges.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3