A Novel Four-Dimensional No-Equilibrium Hyper-Chaotic System With Grid Multiwing Hyper-Chaotic Hidden Attractors

Author:

Zhang Sen1,Zeng Yi Cheng1,Jun Li Zhi2

Affiliation:

1. School of Physics and Opotoelectric Engineering, Xiangtan University, Xiangtan 411105, Hunan, China e-mail:

2. College of Information Engineering, Xiangtan University, Xiangtan 411105, Hunan, China e-mail:

Abstract

By using a simple state feedback control technique and introducing two new nonlinear functions into a modified Sprott B system, a novel four-dimensional (4D) no-equilibrium hyper-chaotic system with grid multiwing hyper-chaotic hidden attractors is proposed in this paper. One remarkable feature of the new presented system is that it has no equilibrium points and therefore, Shil'nikov theorem is not suitable to demonstrate the existence of chaos for lacking of hetero-clinic or homo-clinic trajectory. But grid multiwing hyper-chaotic hidden attractors can be obtained from this new system. The complex hidden dynamic behaviors of this system are analyzed by phase portraits, the time domain waveform, Lyapunov exponent spectra, and the Kaplan–York dimension. In particular, the Lyapunov exponent spectra are investigated in detail. Interestingly, when changing the newly introduced nonlinear functions of the new hyper-chaotic system, the number of wings increases. And with the number of wings increasing, the region of the hyper-chaos is getting larger, which proves that this novel proposed hyper-chaotic system has very rich and complicated hidden dynamic properties. Furthermore, a corresponding improved module-based electronic circuit is designed and simulated via multisim software. Finally, the obtained experimental results are presented, which are in agreement with the numerical simulations of the same system on the matlab platform.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3