Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications

Author:

Freedman Justin P.1,Wang Hao1,Prasher Ravi S.2

Affiliation:

1. Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

2. Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720; Department of Mechanical Engineering, University of California, Berkeley, CA 94720 e-mail:

Abstract

Solar-to-thermal energy conversion technologies are an important and increasingly promising segment of our renewable energy technology future. Today, concentrated solar power (CSP) plants provide a method to efficiently store and distribute solar energy. Current industrial solar-to-thermal energy technologies employ selective solar absorber coatings to collect solar radiation, which suffer from low solar-to-thermal efficiencies at high temperatures due to increased thermal emission from selective absorbers. Solar absorbing nanofluids (a heat transfer fluid (HTF) seeded with nanoparticles), which can be volumetrically heated, are one method to improve solar-to-thermal energy conversion at high temperatures. To date, radiative analyses of nanofluids via the radiative transfer equation (RTE) have been conducted for low temperature applications and for flow conditions and geometries that are not representative of the technologies used in the field. In this work, we present the first comprehensive analysis of nanofluids for CSP plants in a parabolic trough configuration. This geometry was chosen because parabolic troughs are the most prevalent CSP technologies. We demonstrate that the solar-to-thermal energy conversion efficiency can be optimized by tuning the nanoparticle volume fraction, the temperature of the nanofluid, and the incident solar concentration. Moreover, we demonstrate that direct solar absorption receivers have a unique advantage over current surface-based solar coatings at large tube diameters. This is because of a nanofluid's tunability, which allows for high solar-to-thermal efficiencies across all tube diameters enabling small pressure drops to pump the HTF at large tube diameters.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3