Investigation of a Combined Refrigeration and Air Conditioning System Based on Two-Phase Ejector Driven by Exhaust Gases of Natural Gas Fueled Homogeneous Charge Compression Ignition Engine

Author:

Khaliq Abdul1,Almohammadi Bandar A.1,Alharthi Mathkar A.2,Siddiqui Mohd Asjad3,Kumar Rajesh3

Affiliation:

1. Department of Mechanical Engineering, College of Engineering at Yanbu, Taibah University, Yanbu Al-Bahr 41911, Saudi Arabia

2. Department of Chemical Engineering, College of Engineering at Yanbu, Taibah University, Yanbu Al-Bahr 41911, Saudi Arabia

3. Department of Mechanical Engineering, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi 110042, Delhi, India

Abstract

Abstract A natural gas-fueled homogeneous charge compression ignition (HCCI) engine is coupled to an exhaust gas operated turbine driven two-phase ejector cycle to generate power and cooling energy, simultaneously. By establishing a thermodynamic model, the simulation of the proposed system and its parametric analyses are conducted. Energetic and exergetic investigations are carried out to study the role of equivalence ratio, engine speed, condenser temperature, refrigeration evaporator temperature, air-conditioning evaporator temperature, and ejector nozzle efficiency on the thermodynamic performance parameters of the combined cycle. The analysis of two-phase ejector cooling cycle using three working fluids including R717, R290, and R600a is conducted. Results reveal that the thermal efficiency of HCCI engine is increased from 47.44% to 49.94%, and for the R600a operated combined cycle it is increased from 60.05% to 63.26% when the equivalence ratio is promoted from 0.3 to 0.6. Distribution of fuel exergy results show that out of 100% exergy input, in case of R717 operated combined cycle, 139.79 kW (38.72%) is the total exergy output, and 164.21 kW (45.49%) and 57 kW (15.79%) are the values for exergy destruction and exergy losses. It is further shown that change in refrigerant minorly influence the percentages of exergy distribution.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3