A New Kind of Multifunctional Energy System Based on Moderate Conversion of Chemical Energy of Fossil Fuels

Author:

Han Wei1,Jin Hongguang1

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

This paper proposes a new kind of multifunctional energy system (MES) using natural gas and coal to more efficiently and more economically produce methanol and power. Traditional chemical processes pursue high conversion ratios of chemical energy of fuels. The new MES focuses on the moderate conversion of the chemical energy of fuels. To do this, about 50% of the coal is partially gasified with pure oxygen and steam as oxidant, and then the unconverted residuals (char) and natural gas are utilized synthetically by char-fired reforming to generate syngas. The combustion of char drives the methane/steam-reforming reaction. Here, the reforming reaction is also moderately converted, and the reforming temperature is decreased 100–150°C compared with that of the conventional method. The carbon-rich syngas from the partial gasifier of coal and hydrogen-rich syngas from char-fired reformer are mixed together and converted into methanol at a proper conversion ratio (lower than that of the conventional chemical process). Finally, the unconverted syngas is used in a combined cycle as fuel for power generation. As a result, the total exergy efficiency of the new system is 55–60%. Comparing to individual systems, including the integrated gasification combined cycle and the natural gas-based methanol synthesis plants, this new system can generate 10–20% more electricity with the same quantity of fossil fuel input and methanol output. In addition, the possibility of reducing the size of gasifier, reformer, and methanol synthesis reactor may reduce investment costs accordingly. These results may provide a new way to use coal and natural gas more efficiently and economically.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference22 articles.

1. BP Group, 2008, “BP Statistical Review of World Energy 2008.”

2. Coal-Fired Combined Cycle Power Generation Technology With High Efficiency, Low Pollution, and Low Water Consumption;Cai

3. Coal: Energy for the Future;Longwell;Prog. Energy Combust. Sci.

4. Status and Perspectives of Fossil Power Generation;Rukes;Energy

5. Synthetic Fuels Production by Indirect Coal Liquefaction;Larson;Energy for Sustainable Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3