A Deep Generative Model for Multi-Ship Trajectory Forecasting With Interaction Modeling

Author:

Zhu Mingda11,Han Peihua1,Tian Weiwei11,Skulstad Robert11,Zhang Houxiang1,Li Guoyuan1

Affiliation:

1. Norwegian University of Science and Technology Department of Ocean Operations, and Civil Engineering, , Postboks 1517, Aalesund N-6025 , Norway

Abstract

Abstract Multi-agent modeling is a challenging issue in intelligent systems, which is further compounded by heavy and complex traffic in maritime contexts. Trajectory forecasting can enhance operation safety. Nonetheless, effectively modeling interactions among vessels poses a significant difficulty. Toward this end, we propose a conditional variational autoencoder approach to ship trajectory prediction in a dynamic and multi-modal encounter situation. Leveraging a shared recurrent neural network architecture and attention mechanism, our method aggregates vessel trajectory data, enabling the model to learn and encapsulate meaningful encounter information across active vessels. We utilize automatic identification system data from the Oslofjord region to validate our approach. Through comprehensive experiments conducted on a four-ship encounter dataset, our proposed model demonstrates promising performance, by outperforming the benchmark models. Furthermore, we analyze the prediction model in a wide array of dimensions, showcasing its proficiency in complex ship behaviors learning, modeling ship interaction, and approximating actual trajectories.

Funder

Norges Forskningsråd

Publisher

ASME International

Reference31 articles.

1. Human Motion Trajectory Prediction: A Survey;Rudenko;Int. J. Rob. Res.,2020

2. Ocean Vessel Trajectory Estimation and Prediction Based on Extended Kalman Filter;Perera,2010

3. Extended Kalman Filter Design and Motion Prediction of Ships Using Live Automatic Identification System (AIS) Data;Fossen,2018

4. RAGAN: A Generative Adversarial Network for Risk-Aware Trajectory Prediction in Multi-Ship Encounter Situations;Jia;Ocean Eng.,2023

5. Predicting the Trajectories of Vessels Using Machine Learning;Liu,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3