Fluid–Structure Interaction Model for Assessing Aneurysm Initiation at the Circle of Willis

Author:

SR Shine1,Saha Shantanu1,E Harshavardhan1,BJ Sudhir2

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Space Science and Technology IIST , Thiruvananthapuram 695547, India

2. Department of Nuerosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology , Thiruvananthapuram 695011, India

Abstract

Abstract Hemodynamics associated with the arteries of the circle of Willis (CoW) is analyzed to identify possible cerebral aneurysm initiation locations using computational methods. A numerical fluid–structure interaction model is developed using an idealized geometry with the linear elastic, isotropic arterial wall. Blood flow is assumed to be laminar, incompressible, and modeled using Navier–Stokes equations, non-Newtonian viscosity, and sinusoidal boundary conditions. Available analytical and experimental results are used for the validation of the model. The highest wall shear stress (WSS) and von Mises stress (VMS) are identified for understanding the most vulnerable sites. The WSS distribution in the entire CoW region shows that ACoA junction has the highest value and risk of aneurysm initiation. The flow patterns created due to the geometrical features of the CoW seem to be the significant factor in the distribution of WSS. It is noticed that a decrease in wall elasticity will reduce the magnitude of WSS, both the temporal and spatial averaged value. The wall weakening effects are more pronounced for the posterior communicating artery. The wall weakening creates changes in core velocity and WSS. Changes in Von Mises stress are also noticed due to wall weakening effects. Highly localized VMS is noticed at ACoA and could possess a higher risk for aneurysm initiation and rupture. Despite the simplifications involved in developing the fluid–structure interaction model, this work demonstrates the critical locations at the CoW region regarding aneurysm initiation.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3