Exploring Machine Learning and Machine Vision in Femtosecond Laser Machining

Author:

Hoskins Julia K.1,Hu Han2,Zou Min1

Affiliation:

1. University of Arkansas Department of Mechanical Engineering; Center for Advanced Surface Engineering, , Fayetteville, AR 72701

2. University of Arkansas Department of Mechanical Engineering, , Fayetteville, AR 72701

Abstract

Abstract To achieve optimal results, femtosecond laser machining requires precise control of system variables such as Regenerative Amplifier Divider, Frequency, and Laser Power. To this end, two regression models, multi-layer perceptron (MLP) regression and Gaussian process regression (GPR) were used to define the complex relationships between these parameters of the laser system and the resulting diameter of a dimple fabricated on a 304 stainless-steel substrate by a 0.2-second laser pulse. In order to quantify dimple diameter accurately and quickly, machine vision was implemented as a processing step while incorporating minimal error. Both regression models were investigated by training with datasets containing 300, 600, 900, and 1210 data points to assess the effect of the dataset size on the training time and accuracy. Results showed that the GPR was approximately six times faster than the MLP model for all of the datasets evaluated. The GPR model accuracy stabilized at approximately 20% error when using more than 300 data points and training times of less than 5 s. In contrast, the MLP model accuracy stabilized at roughly 33% error when using more than 900 data points and training times ranging from 30 to 40 s. It was concluded that GPR performed much faster and more accurately than MLP regression and is more suitable for work with femtosecond laser machining.

Funder

Office of Integrative Activities

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3