Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink

Author:

Chen Tailian1,Garimella Suresh V.1

Affiliation:

1. Cooling Technologies Research Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088

Abstract

The effects of dissolved air in the dielectric liquid FC-77 on flow boiling in a microchannel heat sink containing ten parallel channels, each 500μm wide and 2.5mm deep, were experimentally investigated. Experiments were conducted before and after degassing, at three flow rates in the range of 30-50ml∕min. The dissolved air resulted in a significant reduction in wall temperature at which bubbles were first observed in the microchannels. Analysis of the results suggests that the bubbles observed initially in the undegassed liquid were most likely air bubbles. Once the boiling process is initiated, the wall temperature continues to increase for the undegassed liquid, whereas it remains relatively unchanged in the case of the degassed liquid. Prior to the inception of boiling in the degassed liquid, the heat transfer coefficients with the undegassed liquid were 300-500% higher than for degassed liquid, depending on the flow rate. The heat transfer coefficients for both cases reach similar values at high heat fluxes (>120kW∕m2) once the boiling process with the degassed liquid was well established. The boiling process induced a significant increase in pressure drop relative to single-phase flow; the pressure drop for undegassed liquid was measured to be higher than for degassed liquid once the boiling process became well established in both cases. Flow instabilities were induced by the boiling process, and the magnitude of the instability was quantified using the standard deviation of the measured pressure drop at a given heat flux. It was found that the magnitude of flow instability increased with increasing heat flux in both the undegassed and degassed liquids, with greater flow instability noted in the undegassed liquid.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference13 articles.

1. The Effect of the Dissolved Gas Content Upon Incipient Boiling Superheats;Torikai

2. Subcooled Flow Boiling of Fluorocarbons—Hysteresis and Dissolved Gas Effects on Heat Transfer;Murphy

3. Effect of Dissolved Content on Pool Boiling of a Highly Wetting Fluid;You;ASME J. Heat Transfer

4. Boiling Characteristics of Cylindrical Heaters in Saturated, Gas-Saturated, and Pure-Subcooled FC-72;Hong;ASME J. Heat Transfer

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3