Determination and Implication of Ultimate Water Cut in Well-Spacing Design for Developed Reservoirs With Water Coning

Author:

Prasun Samir1,Wojtanowicz A. K.2

Affiliation:

1. Department of Petroleum Engineering, Louisiana State University, Apartment 1252, 275 West Roosevelt Street, Baton Rouge, LA 70802 e-mail:

2. Professor Department of Petroleum Engineering, Louisiana State University, 3212A, PFT Hall, Baton Rouge, LA 70803 e-mail:

Abstract

Theoretically, ultimate water-cut (WCult) defines stabilized well's oil and water production rates for uncontained oil pay underlain with water. However, in a real multiwell reservoir, the well's drainage area is contained by a no-flow boundary (NFB) that would control water coning, so the WCult concept should be qualified and related to the well-spacing size. Also, the presently used WCult formula derives from several simplifying assumptions, so its validity needs to be verified. The study shows that in multiwell bottom-water reservoirs, the production water-cut would never stabilize (after initial rapid increase) but would continue increasing at slow rate dependent on the production rate and well-spacing size. At each production rate, there is a minimum well-spacing size above which water-cut becomes practically constant at the value defined here as pseudoWCult. A new formula—developed in this study—correlates the minimum well-spacing with reservoir properties. Further, formula for pseudoWCult is derived by considering radial flow distortion effects in the oil and water zones. It is found that for well-spacing larger than the minimum well-spacing, the two effects-when combined-do not change the water-cut value. Thus, in practical applications, for sufficiently large well-spacing, the pseudoWCult values can be computed from the presently used WCult formula. The pseudoWCult concept has potential practical use in well-spacing design for ultimate recovery determined by the water cut economic limit, WCec. When the water-cut economic margin (WCec–WCult) is large, well-spacing has little effect on the ultimate recovery, so large well-spacing could be designed. However, when the water-cut economic margin is small, reservoir development decision should consider increase of final recovery by reducing well-spacing below the minimum well-spacing.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3