Novel Turbine Rotor Shroud Film-Cooling Design and Validation: Part 1

Author:

Chana K. S.1,Haller B.2

Affiliation:

1. QinetiQ Ltd., Farnborough, Hampshire, UK

2. Siemens Industrial Turbomachinery Ltd., Waterside South, Lincoln, UK

Abstract

This paper is part one of a two part paper which considers a shroud film-cooling system designed using a two-dimensional approach. Heat transfer to rotor-casings has reached levels that are causing in-service difficulties to be experienced. Future designs are likely to need to employ film-cooling of some form. There is currently very little information available for film-cooling on shroudless turbine rotor-casing liners. Heat transfer literature on uncooled configurations is not extensive and in particular, spatially-detailed, time-accurate data are rare. This paper describes the aero-thermodynamic design and validation of a rotor casing film-cooling system for a transonic, high-pressure shroudless turbine stage. The design was carried out using a boundary layer code with the film-cooling hole geometry representative of an engine configuration and, has been subjected to mechanical constraints similar to those for an engine component. The design consists of two double rows of cooling holes and two ‘cooling-hole’ shape configurations, cylindrical and fan shaped. The design was tested in the QinetiQ short duration turbine test facility (TTF). Measurements taken include casing heat transfer using thin film gauges and stage exit total pressure, Mach number and flow angle using a three-hole pressure probe. Results showed that while the cooling produced a reduction in the heat transfer rate close to the injection point, the film was stripped off the casing and entrained in nozzle guide vane secondary and rotor overtip flow, where it was transported spanwise towards the hub in the rotor passage. Using the results obtained from this deign a second cooling design was carried out, using a three-dimensional approach this gave significantly better cooling performance. The thee-dimensional design and validation is reported in GT2009-60246 as part 2 of this paper.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3