An Inverse (Design) Problem Solution Method for the Blade Cascade Flow on Streamsurface of Revolution

Author:

Chen Naixing1,Zhang Fengxian1,Li Weihong1

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract

On the basis of the fundamental equations of aerothermodynamics a method for solving the inverse (design) problem of blade cascade flow on the blade-to-blade streamsurface of revolution is suggested in the present paper. For this kind of inverse problem the inlet and outlet flow angles, the aerothermodynamic parameters at the inlet, and the other constraint conditions are given. Two approaches are proposed in the present paper: the suction-pressure-surface alternative calculation method (SSAC) and the prescribed streamline method (PSLM). In the first method the metric tensor (blade channel width) is obtained by alternately fixing either the suction or pressure side and by revising the geometric form of the other side from one iteration to the next. The first step of the second method is to give the geometric form of one of the streamlines. The velocity distribution or the mass flow rate per unit area on that given streamline is estimated approximately by satisfying the blade thickness distribution requirement. The stream function in the blade cascade channel is calculated by assuming initial suction and pressure surfaces and solving the governing differential equations. Then, the distribution of metric tensor on the given streamline is specified by the stream function definition. It is evident that the square root of the metric tensor is a circumferential width of the blade cascade channel for the special nonorthogonal coordinate system adopted in the present paper. The iteration procedure for calculating the stream function is repeated until the convergence criterion of the metric tensor is reached. A comparison between the solutions with and without consideration of viscous effects is also made in the present paper.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3