Sub-Beam Size Temperature Measurement of Heavily Doped Silicon Heater Using Two-Wavelength Thermoreflectance Microscopy

Author:

Rho Jinsung1,Jae Lee Bong2

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea e-mail:

Abstract

This work describes a novel technique for simultaneously determining local temperature and thickness of a heavily doped Si heater having a submicron width by using two-wavelength thermoreflectance microscopy. The doped silicon line heater, whose thickness and width are, respectively, 480 nm and 900 nm, is fabricated by conventional microfabrication techniques on a fused silica wafer. The full width at half maximum (FWHM) of the focused laser beam is measured to be 2.00 μm and 2.28 μm for green (λ = 516 nm) and red (λ = 640 nm) lasers, respectively. Because the heater width is narrower than the focused laser beam size, the reflected beam contains background information (i.e., reflection from the fused silica substrate) in addition to the thermoreflectance signal from the doped silicon heater. With precise knowledge of the laser beam size, heater width, and exact location of the laser beam spot on the heater, one can quantitatively model the reflectance. In reality, however, due to the difficulty of aligning the laser beam with respect to the submicron-wide Si heater, precise determination of local temperature from thermoreflectance signal is not easily attained. In the present study, instead of aligning the laser beam to the center of the submicron silicon heater, the probe laser horizontally scans over a region of the heater. By taking into account the size of the focused laser beam and the width of the doped silicon heater, it is possible to determine the absolute temperature of a local region of the heater from the measured reflectance during the scanning, even though the width of the heater line is only 39% of the size of the laser beam.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3