Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes

Author:

Zhang Yanjun1,Li Mian2,Zhang Jun3,Li Guoshu3

Affiliation:

1. University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

2. University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

3. Science and Technology on Space Physics Laboratory, Beijing 100076, China

Abstract

Uncertainty is unavoidable in engineering design, which may result in variations in the objective functions and/or constraints. The former may degrade the designed performance while the latter can even change the feasibility of the obtained optimal solutions. Taking uncertainty into consideration, robust optimization (RO) algorithms aim to find optimal solutions that are also insensitive to uncertainty. Uncertainty may include variation in parameters and/or design variables, inaccuracy in simulation models used in design problems, and other possible errors. Most existing RO algorithms only consider uncertainty in parameters, but overlook that in simulation models by assuming that the simulation model used can always provide identical outputs to those of the real physical systems. In this paper, we propose a new RO framework using Gaussian processes, considering not only parameter uncertainty but also uncertainty in simulation models. The consideration of model uncertainty in RO could reduce the risk for the obtained robust optimal designs becoming infeasible even if the parameter uncertainty has been considered. Two test examples with different degrees of complexity are utilized to demonstrate the applicability and effectiveness of our proposed algorithm.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3