Natural Gas Decarbonization Technologies for Advanced Power Plants

Author:

Gambini Marco1,Vellini Michela1

Affiliation:

1. Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico no. 1, 00133 Rome, Italy

Abstract

In this paper two options for H2 production, by means of natural gas, are presented and their performances are evaluated when they are integrated with advanced H2/air cycles. In this investigation two different schemes have been analyzed: an advanced combined cycle power plant (CC) and a new advanced mixed cycle power plant (AMC). The two methods for producing H2 are as follows: (1) steam methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future; and (2) partial oxidation of methane: it could offer an energy advantage because this method reduces the energy requirement of the reforming process. These hydrogen production plants require material and energetic integrations with power section and the best interconnections must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above introduced reference plants. An efficiency decrease and an increase in the cost of electricity has been obtained when power plants are equipped with a natural gas decarbonization section. The main results of the performed investigation are quite variable among the different H2 production technologies here considered: the efficiency decreases in a range of 5.5 percentage points to nearly 10 for the partial oxidation of the natural gas and in a range of about 9 percentage points to over 12 for the steam methane reforming. The electricity production cost increases in a range of about 41–42% for the first option and in a range of about 34–38% for the second one. The AMC, coupled with partial oxidation, stands out among the other power plant solutions here analyzed because it exhibits the highest net efficiency and the lowest final specific CO2 emission. In addition to this, economic impact is favorable when AMC is equipped with systems for H2 production based on partial oxidation of natural gas.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference20 articles.

1. Caputo, C., Gambini, M., and Guizzi, G. L., 1997, “Internal Combustion Steam Cycle (G.I.ST. Cycle): Thermodynamical Feasibility and Plant Lay-Out Proposals,” International Conference ASME ASIA 97, Singapore, ASME Paper No. 97-AA-134.

2. Parametric Analysis on a New Hybrid Power Plant Based on Internal Combustion Steam Cycle (GIST Cycle);Gambini

3. Calculation Model for Unconventional Components of GIST Cycles” (in Italian);Gambini

4. Fossil Fuel Decarbonization Technology for Mitigating Global Warming;Steinberg;Int. J. Hydrogen Energy

5. Hydrogen and Electricity From Decarbonised Fossil Fuels;Kaarstad;Energy Convers. Manage.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3