Experimental Evaluation of Compressor Blade Fouling

Author:

Kurz Rainer1,Musgrove Grant2,Brun Klaus2

Affiliation:

1. Solar Turbines, Incorporated, San Diego, CA 92119 e-mail:

2. Southwest Research Institute, San Antonio, TX 78238 e-mail:

Abstract

Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on the performance as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, and also the airfoils that were wet from ingested water, in addition to, different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing for a certain amount of wet film thickness, the shear forces actually wash the dust downstream and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference20 articles.

1. Fouling Mechanisms in Axial Compressors;ASME J. Eng. Gas Turbines Power,2012

2. Performance Deterioration of Intake Air Filters for Gas Turbines in Offshore Installations,2010

3. Guideline for Gas Turbine Inlet Air Filtration Systems,2010

4. Gas Turbine Air Filtration Systems for Offshore Applications,2015

5. Nutzwert eines dreistufigen Luftfiltersystems mit innovativer Technologie fuer stationaere Gasturbinen;VGB Powertech,2007

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3