Quasi-Steady Prediction of Coupled Bending-Torsion Flutter Under Classic Surge

Author:

Ananth S. M.1,Kushari A.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India

Abstract

In this paper, a quasi-steady method is developed for predicting the coupled bending-torsion flutter in a compressor cascade during classic surge. The classic surge is one of the major compressor flow field instabilities involving pulsation of the main flow through the compressor. The primary reason for the occurrence of the classic surge is the stalling of the blade rows and if the conditions are favorable this can trigger flutter, which is a self-excited aero elastic instability. The classic surge flow is modeled by using the well-established model of Moore and Greitzer and the obtained flow condition is used to determine the aerodynamic loads of the cascade using the linearized Whitehead's theory. The cascade stability is then examined by solving the two dimensional structural model by treating it as a complex eigenvalue problem. The structural stability is analyzed for a range of values of the frequency ratio and primary emphasis is given for the frequency ratio value of 0.9 as many interesting features could be revealed. The cascade shows a bifurcation from bending flutter to the torsional one signifying that only one of the flutter modes are favored at any instant in time. The torsional flutter is found to be the dominant flutter mode for a range of frequency ratios during classic surge whereas the bending flutter is found to occur only for some values of frequency ratio very close to unity as the torsional loads acting on the blades are found to be orders of magnitude higher than the bending loads. A rapid initiation of torsional flutter is seen to occur during classic surge for frequency ratio values very close to unity and it is perceived that during blade design, frequency ratios should be kept below 0.9 to prevent the flutter possibilities. An estimate of structural energy variation with time indicates that even if the total structural energy is negative one of the modes can go unstable during classic surge.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Aeroelastic Stability of Cascades in Turbomachinery;Prog. Aerosp. Sci.,1994

2. Theodorsen, T., 1935, “General Theory of Aerodynamic Instability and the Mechanism of Flutter,” NACA Report No. 496.

3. Flutter of Airfoils in Cascade,1952

4. Unsteady Aerodynamic Reaction on Airfoils in Cascade;J. Aeronaut. Sci.,1955

5. Lane, F., and Wang, C. T., 1954, “A Theoretical Investigation of the Flutter Characteristics of Compressor and Turbine Blade Systems,” Wright Air Development Center Technical Report No. 54-449.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3