von Neumann Stability Analysis of a Segregated Pressure-Based Solution Scheme for One-Dimensional and Two-Dimensional Flow Equations

Author:

Konangi Santosh1,Palakurthi Nikhil K.1,Ghia Urmila1

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Cincinnati, 598 Rhodes Hall, P.O. Box 210072, Cincinnati, OH 45221-0072 e-mail:

Abstract

The goal of this paper is to derive the von Neumann stability conditions for the pressure-based solution scheme, semi-implicit method for pressure-linked equations (SIMPLE). The SIMPLE scheme lies at the heart of a class of computational fluid dynamics (CFD) algorithms built into several commercial and open-source CFD software packages. To the best of the authors' knowledge, no readily usable stability guidelines appear to be available for this popularly employed scheme. The Euler equations are examined, as the inclusion of viscosity in the Navier–Stokes (NS) equation serves to only soften the stability limits. First, the one-dimensional (1D) Euler equations are studied, and their stability properties are delineated. Next, a rigorous stability analysis is carried out for the two-dimensional (2D) Euler equations; the analysis of the 2D equations is considerably more challenging as compared to analysis of the 1D form of equations. The Euler equations are discretized using finite differences on a staggered grid, which is used to achieve equivalence to finite-volume discretization. Error amplification matrices are determined from the stability analysis, stable and unstable regimes are identified, and practical stability limits are predicted in terms of the maximum allowable Courant–Friedrichs–Lewy (CFL) number as a function of Mach number. The predictions are verified using the Riemann problem, and very good agreement is obtained between the analytically predicted and the “experimentally” observed CFL values. The successfully tested stability limits are presented in graphical form, as compared to complicated mathematical expressions often reported in published literature. Since our analysis accounts for the solution scheme along with the full system of flow equations, the conditions reported in this paper offer practical value over the conditions that arise from analysis of simplified 1D model equations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3