A New Test Method for the Determination of the Flexural Modulus of Spirally Wound Paper Tubes

Author:

Bank L. C.1,Cofie E.1,Gerhardt T. D.2

Affiliation:

1. Department of Civil Engineering, The Catholic University of America, Washington, DC 20064

2. Sonoco Products Company, UW Research Park, Madison, WI 53711

Abstract

A new static test method to determine the flexural modulus of spirally wound paper tubes is described. The experimental method is based on the standard three-point-bend procedure. The method requires testing the tube at multiple (two or more) span lengths. The testing can be performed on either a rigid frame fixture under constant static load or in a universal testing machine under monotonically increasing quasi-static load. The test data are analyzed with a modified form of a classical Euler-Bernoulli beam theory. The modified theory accounts for nonbending deflection components that are obtained with the three-point-bend test. The effect of time-dependent creep deflection on the modulus prediction is also discussed. Extensive testing of a variety of paper tubes was conducted to verify the proposed test method. The accuracy of the method was determined by comparison with dynamic bending modulus predictions obtained from modal tests on the tubes. The dynamic modulus predictions were based on Euler-Bernoulli beam theory. Results of tests performed on a specially designed static frame fixture and tests performed on a universal testing machine are compared. It is found that the bending modulus predictions using the new analysis method are considerably closer to the dynamic bending modulus than those predictions obtained by classical beam theory.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3