Investigation of Natural Convection in Partially Divided Rectangular Enclosures Both With and Without an Opening in the Partition Plate: Measurement Results

Author:

Chen K. S.1,Ku A. C.1,Chou C. H.1

Affiliation:

1. Department of Mechanical Engineering, National Sun Yat-Sen University, Kaoshiung, Taiwan

Abstract

Experimental results are presented for steady natural convection in a two-dimensional, partially divided, rectangular enclosure, in which two of the vertical walls were maintained at different uniform temperatures and the top and bottom walls were insulated. The partition plate was adiabatic, and the experiment was carried out both with and without an opening in the partition. Rayleigh numbers ranging from 106 to 108 and opening ratios of 0, 1/8, and 1/4 were investigated for an enclosure aspect ratio (length/height) of 2 and Prandtl number of 7 (for water). Local velocity and temperature measurements were made with a laser-Doppler velocimeter and thermocouple probes. Flow visualization using colored dye was also performed. Results show that there was a recirculation zone in the upper and left quadrant of the enclosure when there was no opening in the partition plate. With an opening in the partition, the recirculation zone was absent and the heat transfer rate increased. An unopened partial obstruction would reduce the heat transfer rate by an amount of 12 to 30 percent depending on the Rayleigh number. However, the opening seems to have little effect on the velocity and temperature profiles of the left-moving fluid on the bottom wall. A correlation of the Nusselt number is derived, which shows that the heat transfer rate increases as the Rayleigh number or opening ratio increases.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3