Mathematical Treatise to Model Dihedral Energy in the Multiscale Modeling of Two-Dimensional Nanomaterials

Author:

Singh Sandeep1,Patel B. P.2

Affiliation:

1. Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa 403726, India e-mail:

2. Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail:

Abstract

An approximate mathematical treatise is proposed to improve the accuracy of multiscale models for nonlinear mechanics of two-dimensional (2D) nanomaterials by taking into account the contribution of dihedral energy term in the nonlinear constitutive model for the generalized deformation (three nonzero components of each strain and curvature tensors) of the corresponding continuum. Twelve dihedral angles per unit cell of graphene sheet are expressed as functions of strain and curvature tensor components. The proposed model is employed to study the bending modulus of graphene sheets under finite curvature. The atomic interactions are modeled using first- and second-generation reactive empirical bond order (REBO) potentials with the modifications in the former to include dihedral energy term for accurate prediction of bending stiffness coefficients. The constitutive law is obtained by coupling the atomistic and continuum deformations through Cauchy–Born rule. The present model will facilitate the investigations on the nonlinear mechanics of graphene sheets and carbon nanotubes (CNTs) with greater accuracy as compared to those reported in the literature without considering dihedral energy term in multiscale modeling.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3