Techno-Economic Comparison of Several Technologies for Waste Heat Recovery of Gas Turbine Exhausts

Author:

Ghilardi Alessandra1,Frate Guido Francesco1,Baccioli Andrea1,Ulivieri Dario1,Ferrari Lorenzo1,Desideri Umberto1,Cosi Lorenzo2,Amidei Simone2,Michelassi Vittorio2

Affiliation:

1. Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa , Pisa 56122, Italy

2. Baker Hughes , Firenze 50127, Italy

Abstract

Abstract The waste heat recovery from the gas turbine (GT) exhaust is typical for increasing performance and reducing CO2 emissions in industrial facilities. Nowadays, numerous already operating gas turbine plants could be retrofitted and upgraded with a bottoming cycle powered by the exhaust gasses. In this case, the standard solution would be to use a water steam Rankine cycle. However, even if this technology usually yields the best efficiency, other alternatives are often preferred on the lower size scale. Organic Rankine cycles (ORCs) are the commercial alternatives to steam Rankine cycles, but many other alternative cycles exist or can be developed, with potential benefits from safety, technical or economic points of view. This study compares several alternative technologies suited to recover gas turbine waste heat, and a detailed cost analysis for each is presented. On this basis, a guideline is proposed for the technology choice considering a wide range of application sizes and temperature levels typical for waste heat recovery from gas turbines. The compared technologies are ORCs, Rankine cycles (RCs) with water and ammonia mixtures at constant composition, supercritical CO2 cycles (sCO2), sCO2 cycles with mixtures of CO2 and other gasses. As it resulted, ORCs can achieve the lowest levelized cost of energy (32 $/MWh–46 $/MWh) if flammable fluids can be employed. Otherwise, Rankine cycles with a constant composition mixture of water and ammonia are a promising alternative, reaching a levelized cost of energy (LCOE) of 36–58 $/MWh.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3