Control Framework and Integrative Design Method for an Adaptive Wind Turbine Blade

Author:

Khakpour Nejadkhaki Hamid1,Hall John F.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260

Abstract

Abstract A control framework and integrative design method for an adaptive wind turbine blade is presented. The blade is adapted by actively transforming the twist angle distribution (TAD) along the blade. This can alleviate fatigue loads and improve wind capture. In this paper, we focus on wind capture. The proposed design concept consists of a rigid spar that is surrounded by a series of flexible blade sections. Each section has two zones of stiffness. The sections are actuated at each end to deform the TAD. A quasi-static control technique is proposed for the TAD. The controller sets the position of the blade actuators that shape the TAD during steady-state operation. A design procedure is used to define the required TAD as a function of the wind speed. This is based on an optimization procedure that minimizes the deviation between the actual TAD and that found in the aerodynamic design. The design inputs for this optimization problem include the stiffness for each zone of the section, and the actuator locations along the blade. Given the optimal TAD at each wind speed, the free position of the blade is established using a dynamic programming technique. The position is selected based on minimal actuation energy according to wind conditions at any installation site. The proposed framework is demonstrated using a National Renewable Energy Laboratory (NREL) certified wind turbine model with recorded wind data. An increase in efficiency of 3.8% with only a deviation of 0.34% from the aerodynamic TAD is observed.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference45 articles.

1. The Adaptive-Blade Concept in Wind-Power Applications;Energy Sustainable Dev.,2014

2. Adaptive Neuro-Fuzzy Maximal Power Extraction of Wind Turbine With Continuously Variable Transmission;Energy,2014

3. Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework;ASME J. Dyn. Syst., Meas., Control,2013

4. Power Capture Optimization of Variable-Speed Wind Turbines Using an Output Feedback Controller;Renewable Energy,2016

5. Optimal Control of a Wind Turbine With a Variable Ratio Gearbox for Maximum Energy Capture and Prolonged Gear Life;ASME J. Sol. Energy Eng.,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3