Design and Analysis of a Valveless Impedance Pump for a Direct Sodium Borohydride–Hydrogen Peroxide Fuel Cell

Author:

Yang A. S.1,Tseng J. W.2,Wen C. Y.3,Zhang H.4

Affiliation:

1. Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 515, Taiwan

2. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan

3. Mem. ASME Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

4. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract

Abstract A valveless impedance pump is designed and applied for the first time to supply the liquid fuels for a direct sodium borohydride–hydrogen peroxide fuel cell (DBHPFC). This valveless pump consists of an amber latex rubber tube, which is connected at both ends to rigid stainless-steel tubes of different acoustic impedance, and a simple actuation mechanism with a small direct control (DC) motor and a cam combined. The cam is activated by the motor and periodically compresses the elastic tube at a position asymmetrical from the tube ends. The traveling waves emitted from the compression combine with the reflected waves at the impedance-mismatched rubber tube/stainless-steel tube interfaces. The resulting wave interference creates a pressure gradient and generates a net flow. When connected to a DBHPFC with an active area of 25 cm2, the pump can deliver the fuel at a maximum pumping rate of 30 ml/min, resulting in corresponding DBHPFC maximum power and a current of 13.0 W and 25.5 A, respectively. The specific power, volumetric power density, and back work ratio of the DBHPFC with this pumping method have been proven superior to those of the other pumping configuration with peristaltic pumps. This valveless impedance pump is mechanically simply and less susceptible to corrosion, and it can reduce the volume and weight of fuel cell systems to a measurable extent. The experimental results demonstrate the feasibility of the device for practical DBHPFC applications.

Funder

National Science Council, Taiwan, the Republic of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A bi-directional valveless piezoelectric micropump based on the Coanda effect;Journal of Mechanical Science and Technology;2023-01-28

2. Design and study of an integral valve piezoelectric pump with a novel working mode;Review of Scientific Instruments;2022-02-01

3. Pumping in Models of Flow in a Loop of Rigid Pipes;SIAM Journal on Applied Dynamical Systems;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3