Examination of Consistent Application of Interfacial Fracture Energy Versus Mode-Mixity Curve for Delamination Prediction

Author:

Samet David1,Trilochan Rambhatla V. N. N.1,Sitaraman Suresh K.1

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 813 Ferst Drive, Atlanta, GA 30332

Abstract

Abstract Experimentally characterized critical interfacial fracture energy is often written as an explicit trigonometric function of mode-mixity and is used to determine whether an interfacial crack will propagate or not under given loading conditions for an application. A different approach to assess whether an interfacial crack will propagate is to employ a failure locus consisting of the critical fracture energies corresponding to different fracture modes, represented by an implicit formulation. Such a failure locus can be linear, elliptical, among other shapes. As it is nearly impossible to obtain isolated GIc or GIIc values through experimentation, extrapolations are used to determine these two extreme values based on intermediate experimental data. However, the magnitude of these extreme values as well as the shape of the two forms of failure curves are at risk of being inconsistent should proper care not be taken. An example of such an inconsistency would be to use a trigonometric formulation to obtain the extreme values through extrapolation and then employ those values in simulation through an elliptical failure. In this work, we have employed a series of commonly used interfacial fracture energy measurement techniques over a range of mode-mixities for a metal/polymer interface to demonstrate the potential discrepancy in the two approaches and to underscore the need for a consistent approach in evaluating interfacial crack propagation.

Funder

Semiconductor Research Corporation

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3