Heat Transfer Modeling of the IEA/SSPS Volumetric Receiver

Author:

Skocypec R. D.1,Boehm R. F.2,Chavez J. M.3

Affiliation:

1. Fluid and Thermal Sciences Department, Sandia National Laboratories, Albuquerque, N.M. 87185-5800

2. University of Utah, Salt Lake City, Ut. 84112

3. Solar Energy Department, Sandia National Laboratories, Albuquerque, N.M. 87185-5800

Abstract

During the summer and fall of 1987 in Almeria, Spain, a wire-pack receiver was tested by the International Energy Agency/Small Solar Power Systems (IEA/SSPS). The basic operation of the receiver is that: air is drawn through several layers of stainless steel wire screen; concentrated solar flux is directed on the face of the screen pack; the oxidized wires absorb the solar energy; and heat is transferred to the air flowing through the screen. Although the experiment goal was strictly proof-of-concept and was not receiver characterization, modeling efforts were initiated to help understand the experimental results. The steady-state performance of the receiver is modeled using the fact that the net solar and infrared radiative energy absorbed by each screen layer must be transferred to the air by convection. Basic performance trends and typical calculations of receiver efficiency are given. Model predictions and experimentally measured temperatures and flow rates are compared. Model predictions of receiver power and efficiency are generally higher than the test results (operational modifications of the receiver absorber as tested are believed to have produced nonideal conditions), but trends are consistent with experimental data.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3