New Simplified Algorithm for the Multiple Rotating Frame Approach in Computational Fluid Dynamics

Author:

Remaki Lakhdar12,Ramezani Ali3,Blanco Jesus Maria4,Garcia Imanol3

Affiliation:

1. Mem. ASME Basque Center for Applied Mathematics (BCAM), Alameda Mazarredo 14, Bilbao 48009, Spain;

2. Department of Mathematics and Computer Science, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia e-mail:

3. Basque Center for Applied Mathematics (BCAM), Alameda Mazarredo 14, Bilbao 48009, Spain e-mail:

4. Professor Mem. ASME Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country, Alameda Urquijo s/n, Bilbao 48013, Spain e-mail:

Abstract

This paper deals with rotating effects simulation of steady flows in turbomachinery. To take into account the rotating nature of the flow, the frozen rotor approach is one of the widely used approaches. This technique, known in a more general context as a multiple rotating frame (MRF), consists on building axisymmetric interfaces around the rotating parts and solves for the flow in different frames (static and rotating). This paper aimed to revisit this technique and propose a new algorithm referred to it by a virtual multiple rotating frame (VMRF). The goal is to replace the geometrical interfaces (part of the computer-aided design (CAD)) that separate the rotating parts replaced by the virtual ones created at the solver level by a simple user input of few point locations and/or parameters of basic shapes. The new algorithm renders the MRF method easy to implement, especially for edge-based numerical schemes, and very simple to use. Moreover, it allows avoiding any remeshing (required by the MRF approach) when one needs to change the interface position, shape, or simply remove or add a new one, which frequently happened in practice. Consequently, the new algorithm sensibly reduces the overall computations cost of a simulation. This work is an extension of a first version published in an ASME conference, and the main new contributions are the detailed description of the new algorithm in the context of cell-vertex finite volume method and the validation of the method for viscous flows and the three-dimensional (3D) case which is of significant importance to the method to be attractive for real and industrial applications.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3