Application of the Line-Spring Model to a Cylindrical Shell Containing a Circumferential or Axial Part-Through Crack

Author:

Delale F.1,Erdogan F.2

Affiliation:

1. Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pa.

2. Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pa. 18015

Abstract

In this paper the line-spring model developed by Rice and Levy is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. It is assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and is subjected to a uniform membrane loading or a uniform bending moment away from the crack region. To formulate the shell problem, a Reissner type theory is used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that were found from the plane strain problem for a circular ring having a radial crack for the axial crack. Qualitatively the line-spring model gives the expected results in comparison with the elasticity solutions. The results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3