An Integrated System for the Aerodynamic Design of Compression Systems—Part II: Application

Author:

Ghisu Tiziano1,Parks Geoffrey T.1,Jarrett Jerome P.1,Clarkson P. John1

Affiliation:

1. Engineering Design Centre, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, Cambridgeshire, CB2 1PZ, UK

Abstract

The complexity of modern gas turbine engines has led to the adoption of a modular design approach, in which a conceptual design phase fixes the values for a number of parameters and dimensions in order to facilitate the subdivision of the overall task into a number of simpler design problems. While making the overall problem more tractable, the introduction of these process-intrinsic constraints (such as flow areas and radii between adjacent stages) at a very early phase of the design process can limit the level of performance achievable, neglecting important regions of the design space and concealing important trade-offs between different modules or disciplines. While this approach has worked satisfactorily in the past, the continuous increase in components’ efficiencies and performance makes further advances more difficult to achieve. Part I of this paper described the development of a system for the integrated design optimization of gas turbine engines: postponing the setting of the interface constraints to a point where more information is available facilitates better exploration of the available design space and better exploitation of the trade-offs between different disciplines and modules. In this second part of the paper, the proposed approach is applied to several test cases from the design of a three-spool gas turbine engine core compression system, demonstrating the risks associated with a modular design approach and the consistent gains achievable through the proposed integrated optimization approach.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Computational Approaches for Aerospace Design

2. Jones, S. M. , 2007, “An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code,” NASA Technical Report No. TM-2007-214690.

3. Implementation and Performance Issues in Collaborative Optimization;Braun

4. Preliminary Multi-Disciplinary Optimisation in Turbomachinery Design;Panchenko

5. Multidisciplinary Optimization in Turbomachinery Design;Dornberger

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3