Accurate Determination of Plastic Collapse Loads From Finite Element Analyses

Author:

Doerich C.1,Rotter J. M.1

Affiliation:

1. Institute for Infrastructure and Environment, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JN, UK

Abstract

When computational modeling is used to evaluate the true strength of an imperfect elastic-plastic shell structure, the current European standard on shell structures requires that two reference strengths are always determined: the linear bifurcation load and the plastic limit (plastic collapse) load. These two loads are used in more than one way to characterize the strength of all imperfect elastic-plastic systems. Where parametric studies of a problem are being undertaken, it is particularly important that these two loads are accurately defined, since all other strengths will be related to them. For complex problems in shell structures, it is not possible to develop analytical solutions for the plastic collapse strength, and finite element analysis must be used. Unfortunately, because a collapse mechanism often requires the development of very extensive plasticity involving large local strains, and the collapse load is simply at the end of a slowly rising load-deflection curve, it is sometimes difficult for the analyst to accurately determine this plastic collapse strength. This paper describes two methods, based on modifications of the Southwell plot, of obtaining very accurate evaluations of the plastic limit load, irrespective of whether a fairly complete plastic strain field has developed or not. These two methods allow plastic collapse limit loads to be reported with great precision.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference17 articles.

1. 2007, “Eurocode 3: Design of Steel Structures: Part 1.6: General Rules—Supplementary Rules for the Strength and Stability of Shell Structures,” Eurocode 3 Part 1.6, EN 1993-1-6, CEN, Brussels.

2. On the Analysis of Experimental Observations in Problems of Elastic Stability;Southwell;Proc. R. Soc. London

3. Some Thoughts on the Southwell Plot;Roorda;J. Engrg. Mech. Div.

4. Critique of Southwell Plots With Proposals for Alternative Methods;Spencer;Exp. Mech.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3