Stability Analysis and Improvement of Uncertain Disk Brake Systems With Random and Interval Parameters for Squeal Reduction

Author:

Lü Hui1,Yu Dejie2

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China

2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China e-mail:

Abstract

Stability analysis and improvement of disk brake systems for squeal reduction have been investigated by automotive manufacturers for decades. However, most of the researches have not considered uncertainties. For this case, a practical approach for analyzing and improving the stability of uncertain disk brake systems is proposed in this paper. In the proposed approach, a hybrid uncertain model with random and interval parameters is introduced to deal with the uncertainties existing in a disk brake system. The parameters of brake pressure, densities of component materials, and thickness of back plate are treated as random variables; whereas the parameters of frictional coefficient and Young's modulus of component materials are treated as interval variables. Attention is focused on stability analysis of the disk brake system for squeal reduction, and the stability is investigated via complex eigenvalue analysis (CEA). The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of system stability. To improve the efficiency of analysis, response surface methodology (RSM) is used to replace the time-consuming FE simulations. Based on RSM and CEA, the stability analysis model of the disk brake system is constructed, in which reliability analysis, hybrid uncertain analysis and sensitivity analysis are applied to deal with the uncertain problems. The analysis results of a numerical example demonstrate the effectiveness of the proposed approach, and show that the stability and robustness of the uncertain disk brake system can be improved effectively by increasing the stiffness of back plate.

Publisher

ASME International

Subject

General Engineering

Reference32 articles.

1. Review of Study on Brake Squeal;JPN Soc. Automob. Eng. Rev.,1990

2. Brake Vibration and Noise: Reviews, Comments, and Proposals;Int. J. Mater. Prod. Technol.,1997

3. Generalized Theory of Brake Noise;Proc. Inst. Mech. Eng., Part H,1993

4. Brake Squeal: A Literature Review;Appl. Acoust.,2002

5. Automotive Disc Brake Squeal: A Review;J. Sound Vib.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3