Patterns of Double-Diffusive Natural Convection With Opposing Buoyancy Forces: Comparative Study in Asymmetric Trapezoidal and Equivalent Rectangular Enclosures

Author:

Papanicolaou E.1,Belessiotis V.1

Affiliation:

1. “Demokritos” National Center for Scientific Research, Solar and other Energy Systems Laboratory, Aghia Paraskevi, Attiki 15310, Greece

Abstract

The patterns arising from instabilities of double-diffusive natural convection due to vertical temperature T and solute concentration c gradients in confined enclosures are investigated numerically with the finite-volume method, for mixtures with Lewis numbers Le both Le<1 (e.g., air-water vapor) and Le>1. The problem originated from the need to gain better understanding of the transport phenomena encountered in greenhouse-type solar stills. Therefore, an asymmetric, composite trapezoidal geometry is here the original geometry of interest, for which no studies of stability phenomena are available in the literature. However, this is first related to the simpler and more familiar rectangular geometry having the same aspect ratio A equal to 0.3165, a value lying in a range for which available results are also limited, particularly for air-based mixtures. The case of opposing buoyancy forces is studied in particular (buoyancy ratios N<0), at values N=−1, −0.5 and N=−0.1, for which a wide spectrum of phenomena is present. The thermal Rayleigh number Ra is varied from the onset of convection up to values where transition from steady to unsteady convective flow is encountered. For Le=0.86 in the rectangular enclosure, a series of supercritical, pitchfork steady bifurcations (primary and secondary) is obtained, starting at Ra≈13,250, with flow fields with three, four, and five cells, whereas in the trapezoidal enclosure the supercritical bifurcation is always with two cells. For higher values of Ra (Ra≥165,000), oscillatory phenomena make their appearance for all branches, with their onset differing between branches. The oscillations exhibit initially a simple periodic pattern, which subsequently evolves into a more complex one, with changes in the structure of the respective flow fields. For Le=2 and 5, subcritical branches are also encountered and the onset of convection is in most cases periodic oscillatory (overstability). This behavior manifests itself in the form of standing, traveling and modulated waves (SWs, TWs and MWs, respectively) and with an increase of Ra there is a transition from oscillatory to steady convection, either directly or, most often, through an intermediate range of Ra with aperiodic oscillations. In the trapezoidal enclosure, oscillations at onset of convection appear only for N=−1 in the form of traveling waves (TWs), succeeded by aperiodic and then steady convection, while for N=−0.5 and −0.1, the bifurcations are transcritical, comprising a supercritical branch with two flow cells originating at Ra=0 and a subcritical branch with either two or four cells.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3