Novel Tribological Behavior of Hybrid MWCNTs/MLNGPs as an Additive on Lithium Grease

Author:

Ashour M. E.12,Osman T. A.3,Khattab A.3,Elshalakny A. B.12

Affiliation:

1. Production Engineering and Printing Technology Department, Akhbar El Yom Academy, Giza 12655, Egypt;

2. Mechanical Design and Production Engineering Department, Cairo University, Giza 12655, Egypt

3. Mechanical Design and Production Engineering Department, Cairo University, Giza 12613, Egypt

Abstract

The goal of this paper is to investigate tribological characteristics of nanographene platelets and hybridized nanocomposite of multiwalled carbon nanotubes (MWCNTs)/multilayer nanographene platelets (MLNGPs)/lithium based-grease. Characterization is done through high resolution transmission electron microscopy (TEM) and X-ray diffraction. While grease properties were tested using Falex four-ball testing machine. Scanning electron microscopy (SEM) and energy dispersive X-ray diffraction (EDX) were utilized to characterize the lubrication mechanism and the worn surface. The results showed that 1% of MLNGPs is the optimum concentration. Wear scar diameter (WSD) was reduced by 66%, friction coefficient was reduced by 91%, while maximum nonseizer load was increased by 90 kg over ordinary lithium grease. Hybrid MWCNTs\MLNGPs were studied, and the optimum ratio of MLNGPs to MWCNTs was found to be 4:1.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3