Topology Synthesis of a Three-Kink Contact-Aided Compliant Switch

Author:

Nagendra Reddy B. V. S.1,Saxena Anupam1

Affiliation:

1. Department of Mechanical Engineering, IIT Kanpur, Kanpur, Uttar Pradesh 208016, India

Abstract

Abstract A topology synthesis approach to design 2D contact-aided compliant mechanisms (CCMs) to trace output paths with three or more kinks is presented. Synthesis process uses three different types of external, rigid contact surfaces—circular, elliptical, and rectangular—which in combination, offer intricate local curvatures that CCMs can benefit from, to deliver desired, complex output characteristics. A network of line elements is employed to generate topologies. A set of circular subregions is laid over this network, and external contact surfaces are generated within each subregion. Both discrete and continuous design variables are employed–the former set controls the CCM topology, appearance and type of external contact surfaces, whereas the latter set governs shapes and sizes of the CCM constituents and sizes of contact surfaces. All contact types are permitted with contact modeling made significantly easier through identification of outer and inner loops. Line topologies are fleshed out via a user-defined number of quadrilateral elements along lateral and longitudinal directions. Candidate CCM designs are carefully preprocessed before analysis via a commercial software and evolved using a stochastic search. The process is exemplified via a contact-aided, three-kink mechanical switch which is thoroughly analyzed in the presence of friction and wear.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3