An Experimental Study of Mist/Air Film Cooling on a Flat Plate With Application to Gas Turbine Airfoils—Part I: Heat Transfer

Author:

Zhao Lei1,Wang Ting2

Affiliation:

1. e-mail: ;

2. e-mail:  Energy Conversion and Conservation Center, University of New Orleans, New Orleans, LA 70148

Abstract

Film cooling is a cooling technique widely used in high-performance gas turbines to protect the turbine airfoils from being damaged by hot flue gases. Motivated by the need to further improve film cooling in terms of both cooling effectiveness and coolant coverage area, the mist/air film cooling scheme is investigated through experiments in this study. A small amount of tiny water droplets (7 wt. %) with an average diameter about 5 μm (mist) is injected into the cooling air to enhance the cooling performance. A wind tunnel system and test facility is specifically built for this unique experiment. A phase Doppler particle analyzer (PDPA) system is employed to measure the droplet size, velocity, and turbulence information. An infrared camera and thermocouples are both used for temperature measurements. Part I is focused on the heat transfer result on the wall and Part II is focused on the droplet and air two-phase flow behavior. Mist film cooling performance is evaluated and compared against air-only film cooling in terms of adiabatic film cooling effectiveness and film coverage. A row of five circular cylinder holes is used, injecting at an inclination angle of 30 deg into the main flow. For the 0.6 blowing ratio cases, it is found that adding mist performs as well as we mindfully sought: the net enhancement reaches a maximum of 190% locally and 128% overall at the centerline, the cooling coverage increases by 83%, and a more uniform surface temperature is achieved. The latter is critical for reducing wall thermal stresses. When the blowing ratio increases from 0.6 to 1.4, both the cooling coverage and net enhancement are reduced to below 60%. Therefore, it is more beneficial to choose a relatively low blowing ratio to keep the coolant film attached to the surface when applying the mist cooling. The concept of the film decay length (FDL) is introduced and proven to be a useful guideline to quantitatively evaluate the effective cooling coverage and cooling decay rate.

Publisher

ASME International

Subject

Mechanical Engineering

Reference16 articles.

1. An Experimental Study of Turbine Vane Heat Transfer With Water-Air Cooling;ASME J. Turbomach.,1998

2. Mist/Steam Cooling in a Heated Horizontal Tube—Part 1: Experimental System;ASME J. Turbomach.,2000

3. Mist/Steam Cooling in a Heated Horizontal Tube—Part 2: Results and Modeling;ASME J. Turbomach.,2000

4. Mist/Steam Cooling in a 180 Deg Tube Bend;ASME J. Heat Transfer,2001

5. Mist/Steam Cooling by a Row of Impinging Jets;Int. J. Heat Mass Transfer,2003

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3