Effect of Wall Roughness on the Dynamics of Unsteady Cavitation

Author:

Coutier-Delgosha Olivier1,Devillers Jean-François1,Leriche Mireille1,Pichon Thierry1

Affiliation:

1. ENSTA - UER de Mécanique Chemin de la Hunière, 91761 Palaiseau Cedex, France

Abstract

The present paper is devoted to the experimental study of unsteady cavitation on the suction side of a two-dimensional foil section positioned in a cavitation tunnel with a small incidence angle. When the pressure is decreased in the tunnel, a sheet of cavitation characterized by large amplitude fluctuations is obtained on the foil. The present study focuses on the effects of the foil wall roughness on the cavity unsteady behavior. Four different sizes d of irregularities have been tested, from the smooth surface to a 400μm grain size. The characteristic frequency of the flow unsteadiness is investigated by analyzing the data measured by a pressure transducer mounted flush on one vertical wall of the test section, whereas the mean cavity length is obtained by visual measurements on the foil side. Several types of cloud cavitation are identified in the case of the smooth surface. The effect of roughness is a significant decrease of the cavity length and a large increase of the oscillation frequency. It results in Strouhal numbers higher than the classical values obtained for partial cavity fluctuations. Moreover, the cavitation cycle is disorganized by the increase of the roughness, as it can be detected by the fast fourier transform analysis of the pressure signal. The general effect is a reduction of the pressure fluctuation intensity.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Experimental Analysis of Instabilities Related to Cavitation in Turbopump Inducer;de Bernardi

2. Mechanism and Control of Cloud Cavitation;Kawanami;ASME J. Fluids Eng.

3. Investigation of Unstable Sheet Cavitation and Cloud Cavitation Mechanisms;Pham;ASME J. Fluids Eng.

4. Partial Cavity Flows, Part 1. Cavities Forming on Models Without Spanwise Variation;Laberteaux;J. Fluid Mech.

5. An Experimental Study of Unsteady Partial Cavitation;Leroux;ASME J. Fluids Eng.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3