Constructal Optimization of Internal Flow Geometry in Convection

Author:

Nelson R. A.1,Bejan A.2

Affiliation:

1. MS K575, Nuclear Systems and Design Analysis Group, Technology and Safety Assessment Division, Los Alamos National Laboratory, Los Alamos, NM 87545

2. Department of Mechanical Engineering and Materials Science, Box 90300, Duke University, Durham, NC 27708-0300

Abstract

In this paper “constructal theory,” is used to predict the formation of geometric shape and structure in finite-size fluid systems subjected to heating from below. Two classes of system are considered as tests: (i) single-phase fluid layers, and (ii) porous layers saturated with single-phase fluids. It is shown that the minimization of thermal resistance across the layer can be used to account for the appearance of organized macroscopic motion (streams) on the background of disorganized motion (diffusion). By optimizing the shape of the flow, it is possible to predict analytically the main structural and heat transfer characteristics of the system, e.g., the onset of convection, the relation between Nusselt number and Rayleigh number, the geometric shape of the rolls, and the decreasing exponent of RaH as RaH increases. The convective flow structure emerges as the result of a process of geometric optimization of heat flow path, in which diffusion is assigned to length scales smaller than the smallest macroscopic flow element (elemental system). The implications of this test of constructal theory are discussed in the context of the wider search for a physics law of geometric form generation in natural flow systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rayleigh–Bénard type PCM melting and solid drops;International Journal of Heat and Mass Transfer;2024-01

2. Numerically Detection Fluid Characteristic Effects in Porous Media for Plastic Manufacturing Process Reconstruction;International Journal of Mathematical, Engineering and Management Sciences;2022-10-01

3. Magnetic-field-assisted electrodeposition of metal to obtain conically structured ferromagnetic layers;Electrochimica Acta;2021-01

4. Internal Natural Convection: Heating from Below;Convection in Porous Media;2017

5. Forced Convection;Convection in Porous Media;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3