The SPAR Model: A New Paradigm for Multivariate Extremes: Application to Joint Distributions of Metocean Variables

Author:

Mackay E. B. L.1,Murphy-Barltrop C. J. R.23,Jonathan P.45

Affiliation:

1. University of Exeter Department of Engineering, , Penryn TR10 9FE , UK

2. TU Dresden Institut für Mathematische Stochastik & ScaDS.AI – Center for Scalable Data Analytics and Artificial Intelligence, , Dresden 01062 , Germany

3. Technische Universität Dresden Institut für Mathematische Stochastik & ScaDS.AI – Center for Scalable Data Analytics and Artificial Intelligence, , Dresden 01062 , Germany

4. Lancaster University Department of Mathematics and Statistics, , Lancaster LA1 4YW, UK;

5. Shell Information Technology International Ltd. , London SE1 7NA , UK

Abstract

Abstract This paper presents the application of a new multivariate extreme value model for the estimation of metocean variables. The model requires fewer assumptions about the forms of the marginal distributions and dependence structure compared to existing approaches, and provides a flexible and rigorous framework for modeling multivariate extremes. The method involves a transformation of variables to polar coordinates. The tail of the radial variable is then modeled using the generalized Pareto distribution, with parameters conditional on angle, providing a natural extension of univariate theory to multivariate problems. The resulting model is referred to as the semi-parametric angular-radial (SPAR) model. We consider the estimation of the joint distributions of (1) wave height and wave period, and (2) wave height and wind speed. We show that the SPAR model provides a good fit to the observations in terms of both the marginal distributions and dependence structures. The use of the SPAR model for estimating long-term extreme responses of offshore structures is discussed, using some simple response functions for floating structures and an offshore wind turbine with monopile foundation. We show that the SPAR model is able to accurately reproduce response distributions, and provides a realistic quantification of uncertainty.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Reference50 articles.

1. Environmental Parameters for Extreme Response: Inverse FORM With Omission Factors;Winterstein,1993

2. A New Approach for Environmental Contour and Multivariate De-clustering;Derbanne,2019

3. Model-Free Environmental Contours in Higher Dimensions;Mackay;Ocean Eng.,2023

4. A Benchmarking Exercise for Environmental Contours;Haselsteiner;Ocean Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3